
www.manaraa.com

Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2021 

DEFORMATION MANIFOLD LEARNING MODEL FOR MULTI DEFORMATION MANIFOLD LEARNING MODEL FOR MULTI 

WALLED CARBON NANOTUBES WALLED CARBON NANOTUBES 

Shashank S. Pathrudkar 
Michigan Technological University, sspathru@mtu.edu 

Copyright 2021 Shashank S. Pathrudkar 

Recommended Citation Recommended Citation 
Pathrudkar, Shashank S., "DEFORMATION MANIFOLD LEARNING MODEL FOR MULTI WALLED CARBON 
NANOTUBES", Open Access Master's Thesis, Michigan Technological University, 2021. 
https://doi.org/10.37099/mtu.dc.etdr/1173 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Materials Science and Engineering Commons, and the Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1173
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

DEFORMATION MANIFOLD LEARNING MODEL FOR MULTI WALLED

CARBON NANOTUBES

By

Shashank Pathrudkar

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mechanical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2021

© 2021 Shashank Pathrudkar

https://orcid.org/0000-0001-8546-8056


www.manaraa.com



www.manaraa.com

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mechanical Engineering.

Department of Mechanical Engineering - Engineering Mechanics

Thesis Advisor: Dr. Susanta Ghosh

Committee Member: Dr. Amartya Banerjee

Committee Member: Dr. Ranjit Pati

Committee Member: Dr. Soumik Sarkar

Department Chair: Dr. William Predebon



www.manaraa.com



www.manaraa.com

Dedication

To my parents and grandparents

without whom I would neither be who I am nor I would have been able to contribute

to this work.



www.manaraa.com



www.manaraa.com

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Two Dimensional Materials and Multi Walled Carbon Nanotubes . 1

1.2 Atomistic-Continuum Models . . . . . . . . . . . . . . . . . . . . . 3

1.3 Data driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . 6

2 Foliation Model and Data Generation . . . . . . . . . . . . . . . . . 9

2.1 Kinematics of the Foliation Model . . . . . . . . . . . . . . . . . . . 10

2.2 Data generation of MWCNT using Foliation Model . . . . . . . . . 14

vii



www.manaraa.com

3 Deformation Manifold Learning Model . . . . . . . . . . . . . . . . 17

3.1 Proposed Dimensionality Reduction Technique . . . . . . . . . . . . 18

3.1.1 FPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Proposed Constrained–FPCA . . . . . . . . . . . . . . . . . 20

3.2 Learning in the Reduced Dimension through Deep Neural Networks 22

3.3 Limitations of FPCA . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results, Discussions and Future Scope . . . . . . . . . . . . . . . . 33

4.1 Dimensionality Reduction through Proposed Constrained FPCA . . 33

4.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Interpretability of the DML model . . . . . . . . . . . . . . . . . . 40

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



www.manaraa.com

List of Figures

2.1 Kinematics of Foliation model showing undeformed configuration

space, parametric space, deformed configuration and the maps between

them. Reprinted from [75]. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A detailed schematics of the present framework involving the data gen-

eration via simulation and the proposed Deformation Manifold Learn-

ing(DML) model. The DML model includes: the dimensionality re-

duction and the DNN–based learning. Inputs and outputs of DNN are

shown with green arrows. Yellow arrows represent the prediction via

the DML model to obtain the deformation for a given input. Reprinted

from [74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Learning Curves for the DNNs. Training loss ( ) and Validation loss

( ) are plotted against the number of epochs for DNN used for CoF-

PCs corresponding to (a) Torsional deformation, (b) in–plane bending

deformation, and (c) out–of–plane bending deformation. Reprinted

from [75]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



www.manaraa.com

3.3 Cross–sections of MWCNT obtained using two approaches of DML

model ( ) that uses FPCA: (a) FPCA coupled with DNN and (c)

FPCA coupled with the constrained–DNN. These two approaches are

compared against the AC model ( ). (b) and (d) are the close–

up views of the blue boxes corresponding to (a) and (c). (b) Shows

a discontinuity in the DML model and (d) shows increases error in

prediction everywhere. Reprinted from [75]. . . . . . . . . . . . . . 29

3.4 Error balancing through L-curve. Each point on the plot corresponds

to a λ value. Reprinted from [75]. . . . . . . . . . . . . . . . . . . . 30

3.5 Comparison of mean squared error (in the actual deformation) and

error in constraint vs twisting angle at different penalty parameters

(λ = 0.00, λ = 0.09 and λ = 1.00). Reprinted from [75]. . . . . . . . 31

4.1 Cumulative % variance captured by principal components for MWC-

NTs under torsion (left) and bending (right). Reprinted from [75]. . 34

4.2 CoFPCs for the outermost wall of 40 walled tube under 25° twist at a

particular cross–section. Reprinted from [75]. . . . . . . . . . . . . . 34

4.3 Normalized CoFPCs shown as colorbar for Nw =

10, 15, 20, 25, 30, 35, 40. CoFPCs are shown for first 16 FPCs.

CoFPCs are normalized by the maximum value for each tube.

Reprinted from [75]. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



www.manaraa.com

4.4 Correlation plots for test set CoFPCS of (a) in–plane deformation in

torsion, (b) in–plane and (c) out–of–plane deformation in bending. R

= 0.9943(a), 0.9931(b), 0.9991(c). Reprinted from [75]. . . . . . . . 35

4.5 (a) Twisted 40 walled CNT obtained via AC (top) and DML (bottom)

model. (b) Radial deformation colormap (Red: high, Blue: low). Al-

ternate walls of cross–sections obtained via AC ( ) and DML ( )

models, for 10, 20, 30, and 40 walled CNTs. Reprinted from [75]. . . 37

4.6 Bent 35–walled CNT obtained via AC (a,c) and DML (b,d) model.(c)

and (d) show colormap of radial deformations corresponding to (a) and

(b). (e–g) Alternate walls of cross–sections obtained via AC ( ) and

DML ( ) model.Reprinted from [75]. . . . . . . . . . . . . . . . . 38

4.7 Comparison of AC (top) and DML (bottom) models for a 32 walled

CNT (system which is not a part of training data) under torsion (a)

and bending (b). Reprinted from [75]. . . . . . . . . . . . . . . . . . 39

4.8 Energy comparison for (15, 25, 32, 40 –walled) MWCNTs under torsion

(a) and bending (b) via AC ( ) and DML model (+). 32 walled CNT

(+) is an unknown system. The lines ( ) and ( ) are drawn to

highlight pre– and post–buckling regimes. Reprinted from [75]. . . . 39

4.9 Functional Principal components of MWCNTs under torsion (top) and

bending (bottom).Reprinted from [75]. . . . . . . . . . . . . . . . . 41

xi



www.manaraa.com



www.manaraa.com

Preface

Most of the content of this thesis is published in the following journal article:

“Interpretable machine learning model for the deformation of multiwalled carbon

nanotubes”, Upendra Yadav, Shashank Pathrudkar, and Susanta Ghosh, Physical

Review B, American Physical Society, 2021.

American Physical Society has granted permission to the authors to use the published

article in this thesis. Co-authors of that paper, Upendra Yadav and Dr. Susanta

Ghosh have permitted me to use the published article in this thesis. I am grateful

to Upendra Yadav and Dr. Susanta Ghosh to permit me for using the text and

figures from the original article and the supplementary material of the article. In that

paper, I contributed to the formulation and execution of the proposed dimensionality

reduction technique and the development of Deep Neural Networks.

xiii



www.manaraa.com



www.manaraa.com

Acknowledgments

I would like to express my sincere gratitude towards my advisor Dr. Susanta Ghosh for

letting me pursue my MS studies under his able guidance and inspiring me throughout

my journey. His support and constructive criticism has helped me paved my way and

overcome the obstacles in this journey. Without his direction it would have been

impossible for me to attempt this challenging work.

I am grateful to Dr. Amartya Banerjee, University of California, Los Angeles, Dr.

Ranjit Pati, Michigan Technological University, and Dr. Soumik Sarkar, Iowa State

University for taking out their time and being a part of my committee. I thank them

for their feedback on my work.

I would like to thank my parents and my brother without whom I would not have

been able to reach this point in my life. I am grateful for their support, love, prayers,

and sacrifices, and I am certain that I will receive their support in future endeavors.

The role of Michigan Technological University, Mechanical Engineering-Engineering

Mechanics department, and Dr. William Predebon has been vital in this journey and I

thank them for providing all the necessary lab equipment, employment opportunities,

and other facilities. I acknowledge the high-performance computing resources from

the SUPERIOR computing facility at Michigan Tech and the Extreme Science and

xv



www.manaraa.com

Engineering Discovery Environment(XSEDE), which is supported by the NSF grant

number ACI-1548562. (Request number: MSS190003, MSS200004). I would like to

thank Dr. Susanta Ghosh for granting me access to these supercomputing facilities.

My journey till this point was fueled by excellent teachers who took the effort to bring

out the best in me. I would thank all of them, especially Dr. Susanta Ghosh, Dr.

Ibrahim Miskioglu, Dr. Trisha Sain, Dr. Kui Zhang, Dr. Timothy Havens, and Dr.

Anthony Pinar.

I am blessed with friends and lab mates who have always encouraged me and stood

with me in all of my ups and downs in this journey. I would like to thank members

of Dr. Susanta Ghosh’s lab, Upendra Yadav, and Revanth Mattey for helping me

understand numerical methods and continuum mechanics. They always shared their

deep understanding of the topic, which helped me construct this work. I would also

thank other members Ponkrshnan Thiagarajan, Parag Nikam, and Pushkar Khairnar.

I would thank my friends Rushikesh Kulkarni, Chinmay Sathe, Swapnil Bamane,

Prashik Gaikwad, Swarnima Pardeshi, and Revanth Mattey to make this ride at

Michigan Technological University smooth for me. I would like to express my grat-

itude towards Aishwarya Unta and Shreyas Kulkarni for their long-time friendship

and empathy. I would never be able to thank them enough.

I humbly extend my thanks to all the people who are a part of this journey and pray

to receive their continued support.

xvi



www.manaraa.com

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

c-FPCA Constrained Functional Principal Component Analysis

CNT Carbon Nanotube

CoFPCs Coefficients of Functional Principal Components

DML Deformation Manifold Learning

DNN Deep Neural Network

MWCNT Multiwalled Carbon Nanotube

FDA Functional Data Analysis

FPCA Functional Principal Component Analysis

HPC High Performance Computing

ML Machine Learning

PCA Principal Component Analysis

TEM Transmission electron microscopy

xvii



www.manaraa.com



www.manaraa.com

Abstract

Two-Dimensional (2D) materials are being studied widely by researchers due to

their superior material properties over the bulk materials. Since the isolation of

graphene in 2004, graphene has gained popularity amongst the 2D materials commu-

nity. Graphene when rolled into sheets form Carbon Nanotubes (CNTs) which possess

excellent mechanical and electrical properties. Concentric stacks of CNTs yield Multi-

walled Carbon Nanotubes (MWCNTs) which are superior to CNTs in certain aspects.

It has been well established that the deformation of CNTs and MWCNTs change their

mechanical and electrical properties significantly. This has opened doors for CNTs

into numerous applications and also piqued the need of studying the deformation

characteristics of CNTs. Efforts have been made by researchers to develop models

that approximate the geometry of CNTs and simulate them under given loading con-

ditions. Atomistic models, Continuum models, and atomistic-continuum models have

been used to simulate the deformation of CNTs. These models have been accurate

in generating the deformed CNTs and are in good agreement with the experimental

results. The models have also been proven to work well for MWCNTs having millions

of atoms. Despite being accurate these models require high computation power which

is a bottleneck in the wide use of these models. In this work, we present a data-driven

model to predict the deformation of MWCNTs under torsional and bending loads.
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Million atom MWCNTs are discretized and represented through a proposed dimen-

sionality reduction technique described as constrained-Functional Principal Compo-

nent Analysis. Further, learning is performed using Deep Neural Networks (DNNs)

in the dimensionally reduced space. The proposed framework accurately predicts the

deformation of MWCNTs and is in good agreement with the atomistic-physics sim-

ulations. The proposed model has an edge over traditional models in regards to the

computational time and computational power required. The model yields dominant

patterns of deformation which explain the prediction capability of the model. This

makes our model comprehensible. The model is currently developed for MWCNTs

and is presented here, but the model can be extended to other 2D materials and can

form a basis towards the use of data-driven approaches for exploring the mechanics

and physics of 2D materials.

Chapter 1 presented here introduces the topic, provides motivation to the work, and

discusses previous works found in the literature related to the topic. Chapter 2 de-

scribes the Foliation model. Kinematics of the Foliation model are discussed because

the Foliation model was used to generate data train the machine learning model.

Chapter 3 presents the framework of the Deformation Manifold Learning model as

presented in the article. It also elaborates on the proposed dimensionality reduc-

tion technique. Results, conclusions, and future scope of the work are presented in

Chapter 4.

xx
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Chapter 1

Introduction and Motivation

1.1 Two Dimensional Materials and Multi Walled

Carbon Nanotubes

Andre Geim and Konstantin Novoselov did the first successful isolation of graphene

in 2004 [53] and subsequently, superiority of graphene and other two dimensional

materials over bulk materials has been proven by eminent researchers. Since then

rapid progress has been made to utilize the superior mechanical, thermal, chemical,

and electrical properties of Graphene. Along with these properties, the strength and

unique geometry of graphene structures allow them to undergo large deformations in

1
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a reversible manner [13]. Graphene sheet when rolled into a tube form Carbon Nan-

otube (CNT) or more specifically Single Wall Carbon Nanotube (SWCNT). Multiple

concentric tubes form Multi Walled Carbon Nanotube (MWCNT), which is a two-

dimensional arrangement of carbon atoms forming a strong and stable honeycomb

lattice, which interacts with the neighboring graphene sheets and substrates through

weak vanderWaals interactions. Like graphene CNTs possess very high strength and

high stiffness. Young’s Modulus of CNTs is found out to be in the order of TPa. In

1996 M.M.J.Treacy et al reported an average value of 1.8 TPa for Young modulus of

SWCNTs [70]. Similarly, Youngs Modulus for MWCNTs is also in the order of TPa

[16, 44]. Min-Feng Yu et al showed in 2000 that the strength of MWCNTs lies in

the range of 11 to 63 GPa [78]. Exceptionally high axial strength and stiffness make

CNTs an ideal candidate as nanoscale reinforcement fibers in composites. Apart

from mechanical properties CNTs also possess good electrical properties which can

be exploited in NanoElectroMechanical Systems, Electrodes, Super capacitors, etc

[66]. Deformation of CNTs has a significant effect on the mechanical and electrical

properties of CNTs [15, 56, 72]. This makes it important for us to understand the

deformation characteristics of CNTs to make better use of CNTs and understand

the physics of CNTs. CNTs and MWCNTs have a complex deformation morphology

with a nonlinear elastic response to loading in the post-buckling regime [2, 40]. Vari-

ous models have been developed to simulate CNTs and understand their deformation

characteristics which are discussed in section 1.2.

2
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1.2 Atomistic-Continuum Models

Philippe Poncharal et al gave high-resolution Transmission electron microscopy

(TEM) image of a bent nanotube, showing the characteristic wavelike distortion of

CNTs [59]. Researchers have been working on developing computational models to

simulate deformed Carbon Nanotubes and compare them against the experimental

images. Two major types of models developed for CNTs are based on i) Atomistic-

physics of carbon-carbon bonds and ii) Continuum theory. Atomistic models are

based on the atomistic physics of carbon-carbon bonds and they are simulated using

molecular dynamics simulations [18]. Molecular dynamics simulations are accurate

and reliable, but they are prohibited for large systems and are computationally ex-

pensive. Continuum theory based models are built upon thin shell theory and assume

CNTs to be thin shells [55]. Continuum shell models have proven to be nearly ac-

curate but they have prompted long debates about the value of the thickness of the

shell. The thin shell model also neglects the atomistic physics associated with mul-

tiple layers of graphene. To address these issues several atomistic-continuum models

are proposed in the literature [3, 57, 69]. Atomistic-continuum models take into con-

sideration the interatomic potentials and are based on extensions of Cauchy-born rule

[3, 5, 26, 57]. Atomistic-continuum models of multi-layered graphene and MWCNTs

based on empirical potentials take a lot of computation power to evaluate van der

Waals energy and forces. In all these models interwall interactions are modeled using

3



www.manaraa.com

atom-atom interaction potentials like Lennard-jones potential. In all these approaches

every layer of graphene or every wall of MWCNT are to be modeled separately.

To avoid the need for individual treatment of each wall and save on the computa-

tion time required bulk elastic models for MWCNTs or multilayer graphene sheets

are developed and have qualitatively reproduced deformation patterns of MWCNTs

observed in experiments, but at the expense of crude approximations [20]. Foliation

model developed by Susanta Ghosh et al is a bulk model for multilayer graphene

materials that consider the standard interatomic potentials between carbon atoms

(intralayer) and the weak van der Waals interaction between carbon atoms (inter-

layer) is also an atomistic-continuum model which offers unique benefit over other

models [21]. Foliation model is discussed in greater detail in Chapter 2. In this work

we use the Foliation model to generate data to train our Machine Learning model.

1.3 Data driven approaches

Atomistic-continuum models like surface model [5] and Foliation model [21] provide

a computational advantage over their fully atomistic counterparts but they are still

computationally expensive and inaccessible for smaller computing systems. For ex-

ample, a system handled by surface model which contains 31 million atoms required

10 million gauss points and was executed on 512 processors in parallel. Foliation

4
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model provides about 10 fold computational advantage over the Surface model but

still needs enormous computation power. To simulate large systems like multilayered

graphene or MWCNTs these models are executed using High-Performance Computing

(HPC) systems. To alleviate the need of computation power we seek the possibility

of data-driven models which learn the patterns in available data and predict for un-

known inputs. In general terms data-driven models provide a map between inputs

and outputs of the available data. Data-driven models are developed using a variety

of Machine Learning models according to the type of data available at hand.

Machine Learning methods have gained popularity amongst researchers in the past

few years. Deep Neural Networks (DNNs) a class of Machine Learning methods

have been widely used across a variety of fields because of their property to act as

a universal approximator. Deep Learning [41] has shown ground breaking success

in the field of medical sciences [6, 12, 37, 48, 67, 81], material sciences [10, 19, 79],

object and image recognition [11, 31, 39, 58, 80], natural language processing [14, 17]

and many other fields. Deep Learning is also being used by researchers working on

two-dimensional materials [47, 49, 61, 75].

In this work, we present Deformation Manifold Learning (DML) model which can

predict the deformation of MWCNTs under torsional and bending loads [75]. The

model uses Deep Neural Networks for learning purposes. Additional details on the

DNN used in this work, input and output parameters of the DNN, and components

5
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of DML model are given in further chapters.

1.4 Dimensionality Reduction

Deep Neural Networks (DNNs) [32, 41] are intensely investigated for accelerating

mechanics, physics, and materials research [33, 46, 73], however, so far most of the

applications are limited to the prediction of low–dimensional properties, such as ma-

terial moduli. On the contrary, discretized material deformation requires prediction

in a high–dimensional space. Though the continuum deformation is in the ambi-

ent space, the discretized data lies in a very high–dimensional space. For instance,

large thick MWCNTs require several millions of degrees of freedom to describe their

deformation [1, 21].

Deep Learning models can predict low dimensional (e.g. CNN, Autoencoder[27, 28])

or high dimensional outputs (e.g. Encoder-Decoder [6, 24]). However, these Deep

Learning models require high dimensional inputs. State–of–the–art DNNs cannot ac-

curately predict high–dimensional targets from a few input features. The objective of

the present study is to create an ML model to accurately and efficiently predict high–

dimensional discretized deformations of MWCNTs as output from low–dimensional

inputs. This necessitates the reduction of the dimension of the output.

6
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An additional challenge for the MWCNTs is that the deformed configuration is a

non–linear manifold. Thus the reduced–dimension (called latent space) of the defor-

mation is non–linear. Commonly used dimensionality reduction techniques [71] such

as Principal Component Analysis (PCA) and classical Metric Multidimensional Scal-

ing are inapplicable for the present problem since they are based on linear models.

Nonlinear Dimensionality Reduction techniques (also called Manifold Learning) such

as Isomap, Locally–Linear Embedding, and Umap are designed to identify the low–

dimensional non–linear manifold structure of the data [43, 50]. In these techniques, an

approximate low–dimensional neighborhood graph embedded in the high–dimension

is obtained following the manifold structure of the data. However, to accurately

predict the deformation of MWCNTs we need an accurate, smooth, and functional

representation of the mapping from the high–dimensional to a low–dimensional man-

ifold such that it respects the constraints of the deformation. Just visualization or

approximate discrete representations of the low–dimensional manifold are not suffi-

cient for the present purpose. Functional data analysis (FDA) is a branch of statistics

that analyzes functional data providing information about curves or surfaces varying

over a continuum. Functional Principal Component Analysis (FPCA) [62, 77] pro-

vides a smooth functional representation of the data, which is analogous to Kosambi–

Karhunen–Loève Expansion [36, 68]. FPCA represents a stochastic process through

a linear combination of an infinite number of orthogonal functions. These orthogonal

functions are the functional counterparts of principal components in the standard

7
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Principal Component Analysis. However, we found that the FPCA cannot respect

any geometric constraint of the system since these orthogonal functions need not

satisfy any constraint. MWCNTs has periodicity constraint along the circumference

due to its cylindrical structure. As a consequence FPCA yields discontinuous and

erroneous predictions for MWCNTs, which is demonstrated in the present work (see

Sec. 3.3).

In the present work, we propose to extend FPCA by designing a basis set of functions

to satisfy this constraint exactly. We call the proposed technique constrained–FPCA

(c—FPCA). The proposed c–FPCA technique alleviates the curse of dimensional-

ity by providing low–dimensional functional representations for the deformations of

MWCNTs.

8
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Chapter 2

Foliation Model and Data

Generation

In this chapter, we discuss Foliation model and the way we obtain training data us-

ing the Foliation model. Foliation model is a three-dimensional continuum model for

layered crystalline materials. In [21] Susanta Ghosh et al validate the deformation

of MWCNTs obtained using Foliation model against the deformation obtained by

Surface model [3, 5] and experiments [59]. The central idea of the Foliation model is

that the layered crystalline material is viewed as Foliation. Thus the location of the

individual graphene layer is no longer tracked, instead it is considered as a continuous

stack of leaves. The constitutive model for this bulk is derived from the atomic inter-

actions. The interaction energy between the walls results from van der Waals forces

9
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and the elastic energy along the leaves of Foliation is a result of bonded interactions

between the atoms. The unique advantage Foliation model offers over other conven-

tional anisotropic models is that it can be readily discretized using finite elements and

we can coarse grain the system in all directions. This gives Foliation model a compu-

tational edge over other models. Data driven model requires a tremendous amount

of data for training purposes. More the merrier. Therefore, Foliation model proved

beneficial for us to generate the training data given its computational superiority.

2.1 Kinematics of the Foliation Model

Figure 2.1: Kinematics of Foliation model showing undeformed configura-
tion space, parametric space, deformed configuration and the maps between
them. Reprinted from [75].

Let a body in parametric space be denoted by V̄ . The parametric space is described

by coordinates {ξ1, ξ2, ξ3}. The deformed configuration be in the Euclidean space

R3 described by x1, x2, x3. And let the local reference configuration be in the space

described by I1, I2, I3. A map from parametric space to euclidean space is given by

10
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ϕ, another map ϕ0, maps parametric space to the local reference configuration. We

define deformation map using ϕ and ϕ0 as Φ = ϕ ◦ ϕ−1
0 . Figure 2.1 taken from [75]

shows ϕ0, ϕ and Φ.

The deformation gradient can be obtained using deformation map φ as

F = DξϕDξϕ
−1
0 (2.1)

We are simulating (5, 5), (10, 10), · · · , (5Nw, 5Nw) MWCNTs walls, with Nw =

10, 15, 20, 25, 30, 35, 40 where Nw is the number of walls. These MWCNTs are ob-

tained by bending the arm-chair configuration of graphene. The MWCNTs are de-

fined by (5m, 5m). Where m represents the m-th wall in a MWCNT. For example

in a 20-walled MWCNT, we will have (5,5), (10,10) , (15,15)....(100,100) CNTs. In

the ideal configuration of MWCNT the gap between the tubes is constant and is kept

as equilibrium distance for van der Waals interaction. The graphene sheet which is

rolled to form these MWCNTs is neither sheared not stretched. Considering this the

reference configuration can be expressed as

T 0(ξ) =

[ 2π[Rinξ
3 +Rout(1− ξ3)] 0 0

0 L 0

0 0 Rout −Rin

]
(2.2)

11
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where,

Rin: Inner radius

Rout: Outer radius

L: Length of the MWCNT

Considering homogenized stretch and shear-free deformation for reference configura-

tion, the deformation gradient can now be expressed as

F = DξϕT
−1
0 (2.3)

In the Foliation model the parallel surfaces (parallel distribution of walls of MWCNTs)

are refered to as leaf of foliation. The Cauchy-Green strain tensor of the leaves is

expressed as

C l = (T l
0)−Tg(T l

0)−1 (2.4)

where, g is the metric tensor of each leaf at each point and is given by

gα =
∂ϕ

∂ξα
(2.5)

The curvature tensor is obtained by pullback of the Weingertan map and is computed

as,

K = (T l
0)−Tk(T l

0)−1 (2.6)

12
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where, k is the curvature of each leaf, and is given by

kαβ =< n , gβ,α > (2.7)

where, n is the unit normal vector.

Considering the exponential Cauchy-Born rule given in [5], the energy density corre-

sponding to the bonded interactions is given by W (C l,K ). The interatomic energy

(bonded) is computed using the Brenner potential, and the interlayer van der Waals

interaction (non-bonded) is a function of the distance (t) between the walls. Non

bonded potential is obtained by taking the sum of pair–wise 6–12 Lennard–Jones

(LJ) potential over all the atoms pairs in the system, which is given by,

VvdW = −|Vg(t0)|
0.6

[(
t0
t

)4

− 0.4

(
t0
t

)10]
(2.8)

Where, t0 is the equilibrium spacing and Vg(t0) is the well–depth. The total volumetric

effective local van der Waals interaction for a MWCNT according to the FOliation

model is given by

V (λt,C l) =
Nw − 1

Nw

1

t0J l
Vvdw(λtt0) (2.9)

where,

λt: Transversal stretch representing the compaction of the walls.

J l: Leaf Jacobian determinant.

13
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Nw: Number of walls in the MWCNT.

Details of the above equations are provided by Susanta Ghosh et al in [21]. The total

internal energy of the MWCNT is expressed as

Πint(ϕ) =

∫
V̄

(W (C l,K ) + V (λt,C l))dV0 (2.10)

The total energy for the system considering the external applied force can be written

as

Πtotal(ϕ) = Πint(ϕ)− Πext(ϕ) (2.11)

The above total energy is minimized with respect to the deformation map to obtained

deformed shape of MWCNT under given boundary conditions.

2.2 Data generation of MWCNT using Foliation

Model

To learn the deformation pattern of the entire MWCNT, multiple sets of simulations

would be required. Also, it is very difficult to predict the entire MWCNT system

which has millions of degrees of freedom. To reduce the number of simulations we

decomposed the domain into several cross–sections (Ncs) at regular intervals along

14
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its length. Due to the periodicity of the rippling deformation, this decomposition

strategy increases the size of the data set. Let’s assume that the ξ3 co–ordinate of the

m–th tube in the parametric domain is given by ξm3 and each tube is discretized along

the ξ2 direction as {ξn2 }Ncsn=1. Where Ncs denotes the number of cross–sections taken

along the tube length. Thus, discretizing the deformed configuration (Φ) along ξ1

(circumference) and ξ2 (length) yields a collection of deformed cross–sections, which

are parametric curves of ξ1, as Φ −→ {Φ1(ξ1, ξ
n
2 , ξ

m
3 ),Φ2(ξ1, ξ

n
2 , ξ

m
3 ),Φ3(ξ1, ξ

n
2 , ξ

m
3 )},

m = 1, · · · , Nw;n = 1, · · · , Ncs. These curves can be further reparametrized in

the cylindrical coordinate as {θ(ξ1),Φ2(θ(ξ1), ξn2 , ξ
m
3 ), r(θ(ξ1), ξn2 , ξ

m
3 )}. Following the

decomposition technique, the total deformation of each point (ξ1, ξ2, ξ3) for m–th wall

at n–th cross–section of a MWCNT can be represented through two parts, (i) an in–

plane radial deformation r(θ(ξ1), ξn2 , ξ
m
3 ) in the undeformed cross–sectional plane, and

(ii) axial deformation Φ2((θ(ξ1), ξn2 , ξ
m
3 )).

15
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Chapter 3

Deformation Manifold Learning

Model

The proposed semi–supervised ML model includes two steps (i) unsupervised di-

mensionality reduction (via proposed c–FPCA) of the deformed manifold and (ii)

supervised learning (via DNN) of deformation in the reduced dimension. Henceforth,

the proposed ML model is referred to as the Deformation Manifold Learning (DML)

model, shown in Fig. 3.1. It takes the details of the MWCNT system and its bound-

ary conditions as inputs and predicts its high–dimensional discretized deformation.

This chapter describes the components of DML model.

17
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Figure 3.1: A detailed schematics of the present framework involving
the data generation via simulation and the proposed Deformation Mani-
fold Learning(DML) model. The DML model includes: the dimensionality
reduction and the DNN–based learning. Inputs and outputs of DNN are
shown with green arrows. Yellow arrows represent the prediction via the
DML model to obtain the deformation for a given input. Reprinted from
[74].

3.1 Proposed Dimensionality Reduction Tech-

nique

3.1.1 FPCA

The cross–sections of the MWCNTs are given by the mapped (ξ1, ξ3) planes for dif-

ferent ξ2 in the deformed configuration, which constitutes the data set {ri(θ)}Ni=1 of

length N . Let us assume the radial deformations of each tube are sampled from a

18
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stochastic process R(θ), θ ∈ T = (0, 2π), such that its second derivative is square–

integrable. This smoothness of the deformation map is a necessary condition since

the energy of a MWCNT is a function of curvature of its walls. We suppose that

R(θ) can take any of the values ri(θ) ∈ H 2(T ), i = 1, · · · , N . Where H 2(T ) is

Hilbert space. We denote the L2(T ) inner product of functions φi , φj ∈H 2(T ) with

〈φi, φj〉 :
∫
T φi(θ)φj(θ) dθ.

Let the mean and the covariance functions of R(θ) are denoted by µ(θ) and v(θ, ϑ) =

Cov(R(θ), R(ϑ)). Invoking the Kosambi–Karhunen–Loève Expansion theorem [36,

68], the centered process can be expressed as

R(θ)− µ(θ) =
∞∑
k=1

c̄k ψk(θ) (3.1)

Here, c̄k = 〈(R(θ) − µ(θ)), ψ(θ)〉. Where ψk(θ), k = 1, 2, · · · , are the orthonormal

eigenfunctions of the following eigenvalue problem
∫
T v(θ, ϑ)ψ(θ)dϑ = λψ(θ).

These eigenfunctions, ψk(θ), are henceforth referred to as functional principal com-

ponents (functional–PCs). Assuming a finite set of eigenfunctions is sufficient to

approximate the centered stochastic process, R(θ) − µ(θ), its i–th sample can be

written as

ri(θ)− µ(θ) ≈
K∑
k=1

c̄ik ψk(θ), i = 1, · · · , N (3.2)

Interpretation of eigenfunctions: The first eigenfunction ψ1 represents the principal

19



www.manaraa.com

mode of variation of the data set. The k–th eigenfunction ψk is the k–th most

dominant mode of variation orthogonal to {ψi}k−1
i=1 . To solve the aforementioned

eigenvalue problem in H 2(T ) we choose a convenient finite–dimensional basis and

look for solutions in terms of that predefined basis. However, choosing any arbitrary

basis for FPCA will not work, since the deformed configurations of MWCNTs have

geometric constraints that need to be satisfied by the eigenfunctions and hence also

needs to be satisfied by the basis. Erroneous predictions via FPCA is demonstrated

in Sec. 3.3. To solve the eigenvalue problem while satisfying a constraint can be a

difficult task, in the following we reformulate the FPCA in a function space whose

every element satisfies the constraint exactly.

3.1.2 Proposed Constrained–FPCA

In order to alleviate the above mentioned problem, a basis B =

{φk ∈H 2(T ), g(φk) = 0, k = 1, · · · , K} is chosen. This basis B, encodes the

geometric constraint (periodic constraint) of the deformation of MWCNTs via the

function g(φk) = 0, which is crucially important and specializes the FPCA for the

systems with any geometric constraint. We call this novel technique constrained–

FPCA (c–FPCA). We rewrite the data set, {ri(θ)}Ni=1, the eigenfunction ψ(ϑ), and

the covariance function v(ϑ, θ) in terms of the basis B and solve the aforementioned
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eigenvalue problem to obtain the functional–PCs, ψk(ϑ). Subsequently, the func-

tion ri(θ) is represented in terms of functional–PCs using the Eq. 3.2 and their

corresponding coefficients (c̄ik) are referred here as coefficients of functional–PCs

(CoFPCs). The i–th sample can be written in terms of the basis, B, as

ri(θ)− µ(θ) =
K∑
k=1

cik φk(θ), i = 1, · · · , N, cik ∈ R (3.3)

In this work, we have chosen the Fourier Basis for φk. The eigenfunction’s represen-

tation in the basis B as

ψ(θ) =
K∑
k=1

bkφk(θ), bk ∈ R (3.4a)

ψ(θ) = φ(θ)t b, b ∈ RK (3.4b)

The covariance function can be written in the basis B as

v(ϑ, θ) =
1

N
φ(ϑ)t Ct Cφ(θ) (3.5)

the principal component weight functions ψk(s) given as

ψk = arg max
‖ψ‖=1,〈ψ,ψj〉=0

for j=1,··· ,k−1

Var

(∫
T

(R(θ)− µ(θ))ψ(θ)dθ

)
(3.6)
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should satisfy the eigenvalue problem. Hence, the eigenvalue problem can be rewritten

as

∫
T
v(ϑ, θ)ψ(θ)dt =

1

N

∫
T
φ(ϑ)tCtCφ(θ)φ(θ)tb dt

= φ(ϑ)tN−1CtCWb = λφ(ϑ)t b

(3.7)

Where the K × K symmetric matrix W such that Wi,j = 〈φi, φj〉. Defining u =

W1/2b, the above equation can be expressed as a symmetric eigenvalue problem

N−1W1/2CtCW 1/2u = λu (3.8)

Which can be solved for the eigenvector u. The components of each eigenfunction can

be found as b = W−1/2u. The principal basis can be computed as ψ(ϑ) = φ(ϑ)t b.

The dimension of the problem is significantly reduced by obtaining a K (number of

functional–PCs) much smaller than the size of the discretized ri(θ).

3.2 Learning in the Reduced Dimension through

Deep Neural Networks

Various machine learning algorithms are prescribed in the literature to perform regres-

sion and classification [9, 30], but DNNs have the unique capability to act as universal
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approximators [32] and hence are used to generate highly complex nonlinear maps

between inputs and outputs.

We have used Deep Neural Networks (DNNs) to map the MWCNT system param-

eters to its deformation in the reduced dimension. The DNN architecture takes the

Geometry parameters and Boundary conditions as input and outputs CoFPCs. The

4 Inputs for the proposed DNN are: Geometry parameters (i) total number of walls

in the MWCNT (Nw), (ii) the wall number (m,m = 1, · · · , Nw), and (iii) the length

coordinate (Φ2(ξn2 ), n = 1, · · · , Ncs); (iv) Boundary Conditions: Angle of twist (Θ)

or Curvature (κ), per unit length. The dimension of the output layer is the number

of CoFPCs, which is decided based on the accuracy required (in c–FPCA), details of

which are provided in Chapter 4.

In supervised learning [41] DNNs are trained using some set of known inputs and

outputs before we use them to predict for unknown inputs. DNN (N ) is a composite

function of weights w̄ and biases β that maps inputs xi to yi. The objective is to

update these weights w and biases β to minimize the difference between true output

y and predicted output ŷ, defined by a cost function J (y, ŷ):

min
w̄

J (y,N (xi, w̄)) (3.9)
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This is done iteratively by using Stochastic Gradient Descent (SGD) and Backprop-

agation algorithm [42]. Further, this set of trained weights and biases w̄ = (w,β) is

used to predict unknown output yi = N (xi, w̄) for given input xi.

Three DNNs are trained for predicting the following deformations of MWCNTs: (i)

In–plane deformation under torsion, (ii) in–plane, and (ii) out–of–plane (axial) de-

formation under bending. Unlike torsion, in bending the axial deformation is not

negligible, hence we have used two DNNs for in–plane and axial deformations.

Now we discuss the details of the DNN used in the proposed model. As men-

tioned earlier we train 3 different networks for torsion, bending in–plane, and bend-

ing out–of–plane. Data for these DNNs was obtained by simulating 7 MWCNTs

(Nw = 10, 15, 20, 25, 30, 35, 40). Deformed MWCNTs were systematically discretized

to obtain the data points used for training.

DNNs are prone to overfitting while training, which limits their capability to predict

outputs for data set outside the training set. To overcome this issue multiple regu-

larization strategies and normalization [34] strategies are prescribed. In the present

work, we adopt regularization strategies viz. elastic net regularization and early stop-

page [60, 82]. Details of these strategies are as follows,

Early Stopping: The number of epochs used for training purposes was set at a

maximum limit of 2000, however, early stopping was used with a “patience” of 100

24



www.manaraa.com

Figure 3.2: Learning Curves for the DNNs. Training loss ( ) and Val-
idation loss ( ) are plotted against the number of epochs for DNN used
for CoFPCs corresponding to (a) Torsional deformation, (b) in–plane bend-
ing deformation, and (c) out–of–plane bending deformation. Reprinted from
[75].

epochs to avoid overfitting of the network [60, 65]. Learning curves for the DNNs

used are presented in Fig. 3.2. The use of early stopping ensured generalization

performance of our model but to further improve performance for test data we used

naive elastic net regularization [82].

Elastic Net Regularization: A combination of L1 and L2 regularization called
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elastic net regularization [82] is used, which overcomes the individual drawbacks of

L1 and L2 regularization. The cost function including L1 and L2 regularization can

be written as

J̃ (y,N (xi, w̄)) = J (y,N (xi, w̄)) + αΩ(w̄) α ∈ R (3.10)

Where Ω(w̄) = ||w̄||L1 and Ω(w̄) = ||w̄||L2 for L1 and L2 regularization respectively.

The cost function for elastic net regularization can be written as

J̃ (y,N (xi, w̄)) = J (y,N (xi, w̄)) + α1Ω(||w̄||1) + α2Ω(||w̄||2), α1, α2 ∈ R (3.11)

We performed a resampling procedure of k–fold cross–validation on the data set to

validate the performance of the model on independent fractions of the data set [8].

Feature–normalization techniques improve the performance of the network and re-

duce the training and inference time. Various methods like Statistical or Z–score

Normalization, Min–Max normalization, Median Normalization, Sigmoid normaliza-

tion, Statistical Column Normalization are prescribed in literature for performing

Normalization [34]. In the present work, we use Z–score normalization on the number

of walls (Nw), the number of cross–sections (Ncs), and twisting angle (Θ). Min–max

normalization is used for the wall number. Normalization methods are judiciously

chosen and they have improved the correlation.
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Hyperparameter optimization is necessary along with the above mentioned tech-

niques. Hyperparameter tuning helps to achieve high accuracy in DNNs. Grégoire

Montavon, Geneviève B. Orr and Klaus-Robert Müller have gathered neural network

tricks from the world’s most prominent neural networks researchers [51] which have

helped researchers to improve the performance of their neural networks, we have im-

plemented a few of the relevant tricks for regularization and hyperparameter tuning

in our model. DNNs used in the DML model consisted of approximately 40k learning

parameters, 6 hidden layers of varying sizes. Weights were initialized using glorot

(xavier) initialization. The input layer has 4 nodes, Hidden layers have 32, 64, 128,

128, 64, 64 nodes, Output layer has 16 or 6 nodes depending on the deformation

(torsion/bending). From the discretized deformed MWCNTs, we had 0.44 million

datapoints for torsion and 0.32 million datapoints for bending. Out of the available

data, 80% is used for training, 20% is used for testing. Out of 80% of the training

data, we use 20% data as a validation set during training. Adam optimizer was used

to minimize the cost function on the latent space targets [38]. Learning rate was

set to 0.001 as recommended in [38]. The Rectified Linear Unit (ReLU) is used as

an activation function in our network which is a better choice of activation function

to avoid problems of vanishing gradient or exploding gradient as compared to other

activation functions like Sigmoid [22, 23].

DNNs used in DML model are built and trained in Tensorflow 1.1.14 on Python

3.6. We used the Bridges facility available at Pittsburgh Supercomputing Center for
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training purposes. Bridges’ GPU-AI partition consists of NVIDIA Tesla V100 GPU,

which was used for training purposes. The time required per iteration was ≈ 12s and

≈ 8s for DNNs used for MWCNTs under torsion and bending respectively.

MWCNT simulations through Foliation model were done at XSEDE-Bridges super-

computer which is equipped with Intel Haswell (E5-2695 v3) CPUs with 14 cores per

CPU running at 2.3-3.3 GHz with 128GB RAM and 35MB cache. Postprocessing of

the data was performed on the same system. We used an in house desktop system:

2 processors, 18-core Intel Xeon Gold 5220 CPU running at 2.20 GHz with 64 GB

RAM, 24.65MB cache and 512 GB SATA SSD for i) Discretization of the data and

other data preparation tasks ii) Dimensionality reduction iii) Inference from the Deep

Neural Network iv) Plotting the high dimensional deformation data. Discretization of

the data and dimensionality reduction were performed in MATLAB. Parallelization

was achieved by using MATLAB’s Parallel Computing Toolbox.

3.3 Limitations of FPCA

In this section, we show that the failure of FPCA to satisfy the constraint exactly leads

to inaccurate dimension reduction and hence inaccurate prediction of the deformation

via the DML model. To show this limitation of FPCA two approaches are taken here:

(i) FPCA coupled with DNNs
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Figure 3.3: Cross–sections of MWCNT obtained using two approaches
of DML model ( ) that uses FPCA: (a) FPCA coupled with DNN and
(c) FPCA coupled with the constrained–DNN. These two approaches are
compared against the AC model ( ). (b) and (d) are the close–up views
of the blue boxes corresponding to (a) and (c). (b) Shows a discontinuity
in the DML model and (d) shows increases error in prediction everywhere.
Reprinted from [75].

(ii) FPCA coupled with constrained–DNNs.

These approaches were used to predict the deformation of twisted MWCNTs. In

the first approach, we use DNN on the reduced dimension, which is obtained via

FPCA. We found that it yields discontinuity in the deformation due to the violation

of constraints by the FPCA as shown in Fig. 3.3a,b. To overcome the discontinuity, in

the second approach we have enforced the constraint through the DNN by modifying

its objective function:

J̃ (y,N (xi, w̄)) = J (y,N (xi, w̄)) + λEP (3.12)

where EP is the error due to the violation of the constraint. The unknown parameter

λ decides the degree of enforcement of the constraint. The penalty parameter, λ,

provides a balance between the two errors. While the constraint-DNN could reduce

the discontinuity, it significantly compromises accuracy everywhere else as shown in
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Fig. 3.3c, d.
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Figure 3.4: Error balancing through L-curve. Each point on the plot
corresponds to a λ value. Reprinted from [75].

The unknown parameter λ decides the degree of enforcement of the constraint. For

higher values of penalty parameter, the optimization will be dominated by the error

in constraint (EP ). For Lower values of penalty parameter, the optimization will

be dominated by J (y,N (xi, w̄)). Clearly, there is a need to find out the optimum

penalty parameter λ to balance between two errors, which is obtained here by using

the L-curve method [29]. A plot of these two errors is used to obtain the optimum λ as

shown in Fig. 3.4. Point closest to the origin, gives the optimum penalty parameter.

Optimum penalty parameter is used in the modified objective function for training.

The balance between these two errors for various values of λ is shown in Fig. 3.5,

which demonstrates the effect of the penalty parameter on error in constraint and

mean squared error for different twisting angles. The error in constraint decreases
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Figure 3.5: Comparison of mean squared error (in the actual deformation)
and error in constraint vs twisting angle at different penalty parameters
(λ = 0.00, λ = 0.09 and λ = 1.00). Reprinted from [75].

as λ increases. Even for optimal λ, mean square error is quite high (order of 10−3).

Note that the constraint can be satisfied very accurately for very large λ. However,

as expected, we found that for large λ the Mean Squared Error increases significantly

(Fig. 3.5 (bottom)).

To satisfy the constraint exactly we propose an extension to FPCA, termed as

constrained-FPCA (c–FPCA). The proposed c–FPCA strategy reduces the error by

at least two orders of magnitude compared to the constrained DNN strategy).The
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c–FPCA is described in Section Chapter 3 Section 3.1.2.
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Chapter 4

Results, Discussions and Future

Scope

4.1 Dimensionality Reduction through Proposed

Constrained FPCA

The proposed c-FPCA dimensionality reduction could capture 99% variability of the

deformation data set through only 14 and 4 functional–PCs for torsion and bending

respectively, as shown in Fig. 4.1. To capture 99.9% variability, the corresponding

numbers are 16 and 6 respectively. The associated (16 and 6) CoFPCs are used as the

outputs of DNNs. To obtain the functional–PCs we started with 64 basis functions
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to represent data vectors of size up to several hundred. This demonstrates up to two

orders of magnitude dimensionality reduction via the present approach. Owing to the

high accuracy of c–FPCA, DNNs need to learn in significantly reduced dimensions,

yielding higher accuracy. Further, c–FPCA returns only a few dominant modes as

shown in figure 4.2 and figure 4.3 having a perspicuous pattern, which makes it easier

for DNN to learn.
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Figure 4.1: Cumulative % variance captured by principal components for
MWCNTs under torsion (left) and bending (right). Reprinted from [75].

Figure 4.2: CoFPCs for the outermost wall of 40 walled tube under 25°
twist at a particular cross–section. Reprinted from [75].
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Figure 4.3: Normalized CoFPCs shown as colorbar for Nw =
10, 15, 20, 25, 30, 35, 40. CoFPCs are shown for first 16 FPCs. CoFPCs are
normalized by the maximum value for each tube. Reprinted from [75].

Figure 4.4: Correlation plots for test set CoFPCS of (a) in–plane deforma-
tion in torsion, (b) in–plane and (c) out–of–plane deformation in bending.
R = 0.9943(a), 0.9931(b), 0.9991(c). Reprinted from [75].

4.2 Accuracy

While predicting through the DML model, for a given MWCNT system and loading,

at first, the DNN predicts the CoFPCs, which lie in the low–dimensional latent space.

Subsequently, the high–dimensional deformed cross-sections containing all the walls
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(Fig. 4.5 (bottom) and Figs. 4.6 e, f, g) is obtained through inverse c–FPCA.Further,

these deformed cross–sections are concatenated through the length coordinate to gen-

erate the 3D deformed shape. Since the functional–PCs are non–zero almost every-

where, it is imperative that we predict CoFPCs very accurately. To achieve very high

accuracy for DNNs we have adopted the following strategies: (i) regularization tech-

niques, (ii) hyper–parameter tuning, and (iii) features–normalization, (see Sec. 3.2).

The high accuracy of the DNNs is demonstrated through very low relative–mean

squared error (order of 10−4) for the validation data and excellent correlations (R >

0.993) for the test data as shown in Fig. 4.4.

Predictions by the proposed DML model is compared against the AC model for two

types of systems: (i) known systems but unknown loading, (ii) unknown systems and

unknown loading, Deformation morphologies under torsion and bending obtained

through AC and DML models are provided for the known and unknown systems

in Fig. (4.5,4.6) and in Fig. 4.7 respectively. The proposed DML model matches

remarkably well with the AC model for unknown loading as evident from the deformed

surfaces and cross–sections. Their match is quite accurate even when both the system

and the loading are unknown (as long as the unknown system is within the range of the

training data). This obviates the need for AC simulations for such systems, yielding

huge computational savings. However, if an MWCNT lies way outside the range of

the training data its accuracy might go down since it might exhibit a deformation
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Figure 4.5: (a) Twisted 40 walled CNT obtained via AC (top) and DML
(bottom) model. (b) Radial deformation colormap (Red: high, Blue: low).
Alternate walls of cross–sections obtained via AC ( ) and DML ( ) mod-
els, for 10, 20, 30, and 40 walled CNTs. Reprinted from [75].

pattern that doesn’t occur in the training.

To quantify the accuracy, we compute the relative error in the predicted deformed

configurations. The maximum relative error is found to be ≈ 1% for the 32–walled

CNT, which is an unknown system under unknown loading. To quantify the accuracy,

we compute the relative error in the predicted deformed configurations as

1

Nw

Nw∑
m=1

〈(ΦAC(ξ1, ξ2, ξ
m
3 )−ΦDML(ξ1, ξ2, ξ

m
3 ))2 〉

〈ΦAC(ξ1, ξ2, ξm3 ) 2 〉
(4.1)
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Figure 4.6: Bent 35–walled CNT obtained via AC (a,c) and DML (b,d)
model.(c) and (d) show colormap of radial deformations corresponding to
(a) and (b). (e–g) Alternate walls of cross–sections obtained via AC ( )
and DML ( ) model.Reprinted from [75].

Where the symbol 〈•〉 denotes integral over ξ1, ξ2 planes: 〈•〉 :=
∫
• dξ1 dξ2 .

We attribute the high accuracy of the proposed model to the accuracy in both the di-

mensionality reduction and learning through DNNs. The deformation obtained from

CoFPCs (output of the DML model) is used to compute the energy via a discretiza-

tion. The total energy computed through the DML and the AC model matches very

well for both known and unknown systems, as shown in Fig. 4.8.

The proposed model is significantly more efficient than the AC model. The AC model
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Figure 4.7: Comparison of AC (top) and DML (bottom) models for a 32
walled CNT (system which is not a part of training data) under torsion (a)
and bending (b). Reprinted from [75].

Figure 4.8: Energy comparison for (15, 25, 32, 40 –walled) MWCNTs under
torsion (a) and bending (b) via AC ( ) and DML model (+). 32 walled CNT
(+) is an unknown system. The lines ( ) and ( ) are drawn to highlight
pre– and post–buckling regimes. Reprinted from [75].

requires tens or hundreds of total CPU hours in parallel processing to simulate each of

the MWCNTs. Whereas, inference via the proposed model (upon training), requires

only about ten seconds for an unknown MWCNT.
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4.3 Interpretability of the DML model

Despite their applicability and accuracy, ML models are often criticized as “black–

box” or non–comprehensible. Recently there is a surge in efforts to produce intelli-

gible knowledge about the problem through ML models, this ability is referred to as

interpretability [52]. The proposed model is interpretable since the latent space of

deformation is comprehensible through the functions spanning it.

Recently several efforts have been made to overcome the “black box” nature of ML

models and to make them more comprehensible to humans, through formulating in-

terpretation techniques [52]. Herein, we explore the model–based–interpretability (as

defined in [52]) of the proposed model. The proposed model can extract dominant

(principal) modes of deformed configurations and their relative contribution in an

unsupervised manner. A few principal components of the deformation of MWC-

NTs under torsion and bending are shown in Fig. 4.3. The rippling deformation of

MWCNTs under torsion follows a sequence of ridge and furrows, whereas, in case of

bending it resembles the diamond buckling pattern [1]. These key patterns of defor-

mation are captured through the functional principal components (Fig. 4.9). So far

these key deformed patterns were approximately–identified manually for individual

MWCNTs. The principal components of deformation automatically identified in the

present model show qualitative similarity with those identified manually in [4, 5, 83].
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These functional–PCs are universal since they are obtained from the entire data set.

This fact enhances the model’s predictive capability on unseen systems and hence

explains the generalizability (performance for unseen systems) of the model. The

DNNs learn the reduced dimension spanned by the functional–PCs. The principal

modes of deformations are easy to comprehend thus enhance the understanding of

how the proposed model works, which makes it an interpretable model.

Figure 4.9: Functional Principal components of MWCNTs under torsion
(top) and bending (bottom).Reprinted from [75].

4.4 Conclusions

In this study, a novel interpretable machine learning model is proposed, which predicts

high–dimensional deformed configurations of MWCNTs accurately and efficiently us-

ing only 4 inputs. It combines an unsupervised dimensionality reduction of the de-

formed configuration space and supervised learning in the reduced space.
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To conclude this study, we summarize its main features. Firstly, a novel dimension-

ality reduction technique is proposed that extends FPCA to respect the constraints

of deformation exactly. This improves accuracy in low–dimensional representation

of deformation and enables accurate prediction of high–dimensional deformation of

MWCNTs. Secondly, the proposed model is remarkably accurate for unknown sys-

tems and unknown loading. This capability eliminates expensive AC simulations for

systems beyond what is used in the training, yielding a massive gain in computa-

tional efficiency. Thirdly, the principal components are comprehensible and thus help

to elucidate how the model predicts high–dimensional deformation through learning

the space of functional–PCs, leading to model–interpretability.

In future, the proposed model will serve as a basis for the exploration of machine

learning for nanotubes and 2D materials. A similar model can be developed for Boron

nitride nanotubes and other nanotubes. Proposed constrained-FPCA can be used for

dimensionality reduction of manifolds of deformed 2D materials like graphene. This

will enable us to develop machine learning models for the deformation of 2D materials.
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